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Abstract 
 
Ultra-small-angle neutron scattering (USANS) will be used to determine the mean void 
size, the polydispersity in size, and volume fraction of voids in copper. All aspects of the 
experiment, from the sample preparation and instrument setup through to the data 
treatment and interpretation will be briefly described and references given for more in-
depth study. 
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I. INTRODUCTION 
 
Characterization of particle size is a common need in the field of materials science.  
Second phase dispersoids or voids in metal alloys or structural ceramics, and soft matter 
complexes such as oil-water emulsions have all been studied using small angle scattering.  
The much higher resolution of the new ultra-small-angle neutron scattering (USANS) 
instrumentation over conventional SANS extends the maximum particle size from 0.1 to 
10 μm (Barker et al., 2005).  The extension in the size range provides new opportunities 
of study not previously available.   
 
It is well known that materials stressed at high temperatures (0.4 TM < T < 0.7 TM where 
TM is the material melting temperature) often fail by the nucleation, growth and 
coalescence of grain boundary voids (Evans, 1984).  The current samples were fatigued 
at T = 405 C = 0.5 TM.  The stress amplitude had sinusoidal shape with a frequency of 17 
cycles per second.  The maximum stress amplitude was +/-34 MPa.  The grain size is 
approximately 60 μm.  Under the fatigue conditions, the grain boundaries migrate to a 
preferred diamond morphology where the grain boundaries perferentially lie at 45˚ to the 
tensile axis.  The voids nucleate and grow along the grain boundaries shown 
schematically in figure 1.  Three different samples were fatigued to 2.5e4, 5e4, and 1.0e5 
total cycles.  The central section was removed from sample.  Precision density 
measurements using Archimede's principle (Ratcliffe, 1965) were used to independently 
determine the volume fraction of voids φ to 10 to 15% accuracy. 
 
 
Table 1.  Three separate copper samples will be measured in this experiment.  The 
number of fatigue cycles, the sample thickness d and the void volume determined from 
precision density measurements are given below. 
 
# cycles d  φ 
25,000  0.605 cm 0.00044 (6) 
50,000  0.577 cm 0.00132 (16) 
100,000 0.589 cm 0.00241 (40) 
 
Why use SANS? 
Generally, static light scattering and small angle X-ray scattering (SAXS) provide the 
same information about the sample: measurement of macroscopic scattering cross-section 
dΣ/dΩ(q) as neutron scattering.  The contrast in light scattering arises from the difference 
in the light's refractive index between the particle and water.  The wavelength of light 
limits q < 0.002 Å-1. The contrast in X-ray scattering arises from the variation in electron 
density.  For the current copper experiment, neutron or X-ray scattering could be used for 
size characterization. For x-ray scattering very thin ( ~ 10 μm ) samples would need to be 
made to accommodate stronger absorption.  Static light scattering is not possible due to 
very strong absorption. 
 
The Objectives of the Experiment are: 
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• To determine the size and polydispersity of the voids.  This information will be 
derived from the shape, i.e. the q-dependence, of the scattering pattern.  Since the 
voids are nearly spherical, it will be necessary in order to characterize the size to 
measure the intensity over the range 1/D < q < 20/D, where D is the average 
diameter of the voids. 

 
• Determine the volume fraction of the voids. By integrating the scattering curve, 

we can determine a quantity called the Porod's invariant.  The volume fraction can 
be determined from Porod’s Invariant independent of the void volume.  If the 
mean void volume can be determined separately, the volume fraction can also be 
resolved from the q  0 limit of the scattering curve in absolute units.  

 
• Determine the surface area from the Porod regime. The total surface area 

normalized by the sample volume can be determined from fitting the high Q 
regime.  

 
II. PLANNING THE EXPERIMENT 
 
Given the stated objectives of the experiment, how do we go about preparing for the 
experiment to maximize our chances of success?  Here we discuss some of the issues that 
bear on this question. 
 
II.1 Scattering Contrast 
In order for there to be small-angle scattering, there must be scattering contrast between, 
in this case, the void and the surrounding copper matrix.  The scattering is proportional to 
the scattering contrast, Δρ, squared where 
 

wp ρρρ −=Δ    Scattering Contrast      (1) 
 
and ρp and ρw are the scattering length densities (sld) of the voids and the copper 
matrix, respectively.  Recall that sld is defined as 
 

V

b
1

i∑
==

n

iρ      Scattering Length Density     (2) 

 
where V is the volume containing n atoms, and bi is the (bound coherent) scattering 
length of the ith atom in the volume V.  V is usually the molecular or molar volume for a 
homogenous phase in the system of interest.   
 
The sld’s for the two phases in the present case, void and copper, can be calculated from 
the above formula, using a table of the scattering lengths (such as Sears,1992) for the 
elements, or can be calculated using the interactive SLD Calculator available at the 
NCNR’s Web pages (http://www.ncnr.nist.gov/resources/index.html).  The sld’s for void 
and copper are given below in Table 2. 
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Table 2.  The scattering length densities (SLD’s) for polystyrene, light water and heavy 
water.   
 
Material Chemical Formula Mass Density (g/cc) SLD (cm-2) 
Void - 0.0 0.0 
Copper Cu 8.94 6.52 x 1010 

 
 
II.2  Sample Thickness 
The next decision we face is how thick should the sample be?  Recall that the scattered 
intensity, I(q), is proportional to the product of the sample thickness, d, and the sample 
transmission, T, where T, the ratio of the transmitted beam intensity to the incident beam 
intensity, is given by 
T = e−Σ t d ,      Σt = Σc + Σ i + Σa       (3) 
where the total cross section per unit sample volume, Σt, is the sum of the coherent, 
incoherent and absorption cross sections per unit volume.  The absorption, or neutron 
capture, cross section, Σa, can be computed accurately from the tabulated absorption cross 
sections of the elements (and isotopes) if the mass density and stochiometry of the phase 
is known.  Σa is wavelength dependent, being linearly proportional to λ for nearly all 
elements.  The incoherent cross section, Σi, can be estimated from the cross section tables 
for the elements as well, but not as accurately because it depends somewhat on the atomic 
motions and is, therefore, temperature dependent.  The coherent cross section, Σc, is not 
easily estimated since it depends on the details of both the structure and correlated motion 
of the atoms in the material.  The attenuation from copper is dominated by absorption.  
The USANS instrument uses a neutron wavelength  λ = 2.38 Å, which for copper  Σa = 
0.42 cm-1. The optimal sample thickness1, the 1/e thickness, equals d = 1/Σ = 2.3 cm.  
 
Multiple scattering The scattered intensity is proportional to d exp(-Σtd) which has a 
maximum at d = 1/ Σt.  But if the small-angle scattering (SAS) intensity is strong enough 
to create multiple scattering, the scattering curve will become distorted in shape (Schelten 
& Schmatz, 1980). The sample thickness d should than be chosen to make transmission 
from only SAS to be TSAS = exp(-ΣSASt) > 0.9 rather than 1/e = 0.37 to avoid multiple 
scattering.  The cross-section due to SAS can be calculated for monodisperse spheres as 
 

ΣSAS = 3
4 λ2φΔρ 2D        (4) 

 
where φ is the volume fraction and D is the sphere diameter. The voids in these samples 
have a broad size distribution around 1 μm diameter, and volume fraction of 0.1 %. 
Using equation 4, ΣSAS ≈ 0.2 cm-1.  To keep the transmission from SAS TSAS > 0.9, d < 
0.1/ΣSAS = 0.5 cm.  
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II.3  Required Q-Range 
For this experiment we know we will need to measure the intensity over a wide q-range 
since the information we are looking for is distributed in the low and high q regime.  To 
get a better idea of the required q-range, we can use the SANS Data Simulator 
(http://www.ncnr.nist.gov/resources/simulator.html) to calculate the Q-dependence of the 
scattering for the case of non-interacting polydisperse spherical particles.  From among 
the 20 different particle models currently included in the SANS Data Simulator, we 
choose the Polyhardsphere model.  The documentation for this model can be found on 
the Web site at http://www.ncnr.nist.gov/resources/sansmodels/polyhardsphere.html.  A 
plot from the SANS Data Simulator for 1 vol % spheres with polydispersity (p=σ/D) in 
sphere diameter of p = 0, 1.3% and 5% are shown in Figure 2.  Note how with increasing 
polydispersity, the minima in scattering function are attenuated. Determination of the 
polydispersity from SAS data requires accurate measurement of the oscillating section of 
scattering curve. 
 
III.  COLLECTING THE DATA 
 
Figure 3 shows the schematic layout of the instrument.  The sample is placed in a five-
position sample changer.  A channel cut silicon crystal (monochromator) provides a 
neutron beam onto the sample with excellent angular collimation (2 arcsec) in the 
horizontal direction, but with poor resolution in the vertical direction.  To select a 
scattering angle, a second channel-cut silicon crystal (analyzer) is rotated.  The main 
detector than collects scattering with high resolution in horizontal direction.  Figure 4 
represents the q-resolution obtained using the USANS double crystal diffractometer. 
 
III.1  How to Configure the USANS Instrument 
The USANS instrument collects data at one value of q at a time.  Thus, we need to 
choose all the q-values to count during the experiment.  Since we need to cover an 
extended Q-range, 5x10-5 Å-1 < q < 5x10-3, we break the data collection into six separate 
equally spaced scans, with each subsequent scan having roughly doubled q-spacing.  The 
first scan spans the main beam.  The peak intensity is used to determine the q=0 
orientation, scales the intensity into absolute units, and determines the sample 
transmission.  
 
III.2 Sample Transmission 
The sample transmission is determined in two ways.  A separate transmission detector 
(see figure 3), located behind the analyzer, collects all neutrons transmitted through the 
analyzer.  When the analyzer is rotated a sufficient angle off of main beam orientation, 
the transmission detector collects both the direct beam intensity, and the small angle 
scattered intensity.  The ratio of counts collected with the transmission detector, with and 
without the sample, is the sample transmission (Twide) due to attenuation from incoherent 
scattering and absorption.  In addition, rotating the analyzer through the orientation of the 
main beam measures only the beam intensity in the main detector.  Thus the peak 
intensity measured with the sample measures the transmission (Trock) of the sample due to 
attenuation from incoherent scattering, absorption and small angle (coherent) scattering.  



 6

The ratio of these separate transmission measurements can be used to estimate the 
amount of multiple scattering by determining the scattering power (τ = ΣSASt ) by 
 

TSAS =
TRock

TWide

= e−τ         (5) 

 
III.3  What Measurements to Make 
To correct for instrument “background”, measurement of the scattering without the 
sample is needed.  Counts recorded by the detector with the sample in place can come 
from three sources: 1) neutrons scattered by the sample itself (the scattering we are 
interested in); 2) neutrons scattering from something other than the sample, but which 
pass through the sample; and, 3) everything else, including neutrons that reach the 
detector without passing through the sample (stray neutrons or so-called room 
background) and electronic noise in the detector itself.  To separate these three 
contributions, we need three measurements: 
 
i) Scattering measured with the sample in place (which contains contribution from all 3 

sources listed above), denoted Isam; 
 
ii) Scattering measured with the empty sample holder in place (which contains 

contributions from the 2nd and 3rd sources listed above), denoted Iemp; and, 
 
iii) Counts measured with a complete absorber at the sample position (which contains 

only the contribution from the 3rd source listed above) denoted Ibgd. 
 
The Ibgd on the USANS instrument is due predominantly to fast neutrons.  This 
background is independent of instrument configuration and is 0.018 s-1 = 0.62 / 106 
monitor counts.  For this reason, separate beam blocked runs are generally not made for 
the USANS instrument. 
 
III.4  How Long to Count 
A SANS experiment is an example of the type of counting experiment where the 
uncertainty, or more precisely the standard deviation, σ, in the number of counts recorded 
in time, I(t), is σ = √ I(t).  Increasing the counting time by a factor of four will reduce the 
relative error, σ/I, by a factor of two.  If there are 1000 total counts per data point, the 
standard deviation is √1000 ~ 30, producing an relative uncertainty of about 3 %, which 
is good enough for most purposes.   
 
A related question is how long should the empty cell measurements be counted relative to 
the sample measurement.  The same σ = √ I(t) relationship leads to the following 
approximate result for the optimal relative counting times 
   

 
sample

background

sample

background

RateCount

RateCount

t

t
= .      (6) 
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Hence if the scattering from the sample is weak, the background should be counted for as 
long (but no longer!) as the sample scattering.  However, if the sample scattering count 
rate is, say, 4 times greater than the background rate, the background should be counting 
only half as long as the sample scattering.  
 
Since the scattering usually becomes much weaker at larger q, the time spent per data 
point is greatly increased with higher q scans. 
 
IV.  DATA REDUCTION 
 
Data reduction consists of correcting the measured scattering from the sample for the 
sources of background discussed in Section III.3, and rescaling the observed corrected 
data on an absolute scale of scattering cross section per unit volume.  The scaling of the 
slit smeared background-corrected neutron count rate, Icor(q)S , to the slit smeared 
absolute cross section, dΣS(q)/dΩ , is done through the expression 
 
 Icor(q)S = ε ΙBeam ΔΩA d T (dΣΣ(q)/dΩ) ,     (7) 
 
Where: 
   ε = detector efficiency. 
   Ibeam = The intensity of the beam incident upon sample ( neutrons/sec ) 
   d = the sample thickness 
   T = the transmission of the sample (and its container, if there is one) 
   ΔΩ = the solid angle accepted by analyzer 
   dΣS(q)/dΩ = slit smeared scattering cross-section.  
 
The beam intensity, ε ΙBeam , is measured by rotating analyzer through the direct beam at q 
= 0 with the empty cell in the beam.  The transmission T is measured by taking the ratio 
of count rate obtained with and without the sample in the beam with transmission 
detector.  The solid angle of scattering collected by the analyzer is 
 

ΔΩ A =
λ
2π

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2
2ΔqV( )ΔqH ,        (8) 

 
where 2ΔQV is the total vertical divergence of the beam convoluted with angular 
divergence accepted by the detector, and ΔqH is the horizontal divergence accepted by 
diffraction of monochromator and analyzer crystals.  The instrument accepts scattered 
neutrons with +/- ΔqV = 0.117 Å-1 divergence in terms of momentum transfer q.  The 
horizontal resolution ΔqH is measured from the full width at half maximum (fwhm) of the 
main beam profile obtained by rotating analyzer through direct beam.  The fwhm is 2.00 
arcsec, producing ΔqH = 2.55x10-5 Å-1.  The solid angle accepted by the analyzer is ΔΩA 
= 8.6x10-7 Ster.   
 
Smearing 
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The analyzer has good resolution in only one direction, as shown in figure 4.  The 
measured smeared cross-section dΣ/dΩS(q)  is related to desired true cross-section 
dΣ/dΩ(q) by the relation (Roe, 2000) 
 

dΣS
dΩ

(q) =
1

ΔqV

dΣ
dΩ

q2 + u2( )du
0

ΔqV

∫       (9) 

 
Figure 5 shows the slit-smeared scattering from spherical particles having φ = 0.01 with p 
= 0.0, 0.013 and 0.05.  Compare this to the 'true' scattering shown in figure 2.  Infinite slit 
smearing tends to dampen the oscillations.  Desmearing the data directly can be done by 
an iterative convergence method (Lake,1967).  The desmeared result is very unstable, 
being sensitive to noise in the data.  In our analysis we will fit the smeared data directly. 
 
V.  DATA ANALYSIS 
 
V.1  Modeling the Scattering 
Since the volume fraction of the voids in our samples is about 0.001, it is reasonable to 
analyze the scattering in terms of non-interacting particles.  For higher volume fractions, 
the correlation in particle positions must be considered.  Exclusion of possible positions 
due to impenetrability of the hard spheres can be modeled by Percus & Yevick, 1958.  
Charge stabilization can cause larger effects at even relatively dilute concentrations 
(Chen & Lin, 1987).  In the so-called dilute limit, the particles scatter independently, and 
the total scattering is the sum of the scattering from each particle.  The measured intensity 
(corrected for background and put on an absolute scale) for monodisperse spherical 
particles can be expressed as 
 

dΣ(q)
dΩ

= Δρ2 Vp
2 NpP(q),       (10) 

 
where Δρ is the difference in sld’s between the polystyrene particles and D2O; <Vp

2> is 
the mean particle volume squared, and Np is the number of particles per unit volume.  
P(q) is the scattering form factor, which for spherical particles is 
 

  

P(q,R) =
1

Vp
ei

r 
q ⋅

r 
r 

Vp

∫ d
r 
r 

2

=
3 sin qR − qRcos qR( )

qR( )3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2

=    (11) 

 
where R is the sphere radius.  The scattering from a size distribution f(R) of particles is 
 

dΣ(q)
dΩ

=
4π
3

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2
Δρ 2 Np f (R)R6∫ P(q,R)dR      (12) 
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Since the current sample is relatively monodisperse, we will approximate the shape of the 
distribution with a gaussian: 
 

 f (R) =
1

σ 2π
exp −

1
2σ 2 R − Ravg( )2⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥      (13) 

 
where Ravg is the mean particle radius.  We define p = σ / Ravg.   
 
V.2  Particle Volume Fraction Determined from Invariant  
For all two phase systems having uniform scattering length densities in each phase, the 
volume fraction φ can be determined from the integration of the scattering 

φ(1− φ) =
QI

2π 2Δρ 2         (14) 

 
where the invariant is determined by 
 

QI ≡ q2 dΣ
dΩ

(q)dq
0

∞

∫ ≅ 1
Δqv

q
dΣs
dΩ

(q)dq
0

∞

∫      (15) 

 
Figure 6 shows an invariant plot of the slit-smeared scattering: qIS(q) vs q.  By 
integrating the area under the curve, we will be able to determine the Porod invariant QI 
and subsequently the volume fraction φ. This technique of determining the volume 
fraction from scattering data works regardless of particle shape.  
 
V.3  Particle Volume Fraction Determined from Forward Scattering  
For dilute systems, and if the particle has a uniform scattering length density, the forward 
scattering is simply: 
 

dΣ
dΩ

(0) = NP VP
2 Δρ2 = 4

3 πφΔρ2 R6

R3 = 4
3 πφΔρ2 Ravg

3 1 +15p2 + 45p4 +15p6( )
1 + 3p2( )  (16) 

 
where φ is the volume fraction of particles, VP is the average particle volume, and Δρ2 is 
the scattering length density contrast squared.  By slit-smearing Guinier approximation, 
we can estimate the forward scattering dΣ/dΩ(0) directly from slit smeared intensity by 
 

dΣ
dΩ

(0) ≈
2RGΔqV

3π
dΣS
dΩ

(0)       (17) 

 
Since we know Ravg, p, and Δρ, and dΣ/dΩ(0) from equation 17, we can determine the 
volume fraction φ.  We will determine dΣS/dΩ(0) by performing a Guinier fit, described 
later in section V.5. 
 
V.4  Determination of the Interfacial Surface Area: 
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Total interfacial surface area is determined from small angle scattering data using Porod’s 
asymptotic approximation: 
 

lim
q→ ∞

dΣ
dΩ

q( )≡ CP / q4 = 2π Δρ2 S q4       (18) 

 
where S is the interfacial surface area per unit sample volume.  The slit smeared intensity 
in the Porod region is modeled as 
 

 lim
q→ ∞

dΣS
dΩ

q( ) ≡ CP,S / q3 =
πCP

4ΔqV q3       (19) 

 
For a Gaussian distribution of sizes 
 

 S = 4π R2 NP = 3φ
R2

R3 =
3φ

Ravg

1 + p2( )
1 + 3p2( )     (20) 

 
Figure 7 shows the slit-smeared Porod plot: q3I(q) vs q.  By determining an average value 
between oscillations, we can determine CP,s , CP  and subsequently S.  Using equation 20, 
we can than determine the volume fraction φ. 
 
V.5  Determination of Particle size from Guinier Law: 
In the Guinier limit q → 0, the above expressions 8-10 simplify to 
 

dΣ
dΩ

(q) = dΣ
dΩ

(0)exp(-q2Rg
2 / 3)

RG =
3 R8

5 R6
= Ravg 3/ 5

1+ 28p2 + 210 p4 + 420p6 + 105p8( )
1+ 15p2 + 45 p4 +15p6( )

  (21) 

 
The above equation is an example of Guinier’s Law which is valid only for q Rg < 1, 
where Rg is the radius of gyration of the particle. For a homogenous sphere, Rg

2 = 
3R2/5.  This expression is easy to use and allows us to quickly extract the radius of 
gyration of particles in the low q region by plotting ln(I) versus q2.  Figure 8 shows the 
scattering using a Guinier plot.  Note that slit smearing does not change the slope of 
curve, but shifts the curve vertically according to equation 17.  
 
V.6  Summary of Analysis Tasks 
We shall perform the following fits to the slit smeared scattering dΣS/dΩ(q) data: 
 

1) Use a Gaussian shaped size distribution of spheres to determine mean sphere size Ravg 
, the polydispersity P and the volume fraction φ.  Equations 10-13 are used. 
 

2) Integrate the scattering according to equation 15 to determine Porod's invariant QI.  
The invariant will be used to determine the volume fraction φ using equations 14 and 15. 
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3) Perform a Guinier fit to the data as shown in figure 8.  The slope will be converted to a 
Guinier radius RG which can than be used to calculate the mean particle radius Ravg.  The 
forward cross-section, corrected for smearing by equation 17, will be used to calculate 
the volume fraction φ. 
 

4) Make a Porod plot and determine asymptotic Porod's constant CP,s.  From equations 18 
and 19 determine interfacial surface area S.  From know average particle size, determine 
volume fraction using equation 20. 
 

From the above fits, we will have one determination of polydispersity P, two 
determinations of mean particle size Ravg , and four separate determinations of volume 
fraction. 
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Figure 1.  A simplified drawing detailing the preferred the alignment of grain boundaries 
in a diamond configuration 45˚ to the stress axis.  On a lrage fraction of the grain 
boundaries, voids nucleate and grow.  At a late stage, the cavities link up to form  grain 
size cracks. 
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Figure 2.  The simulated SANS from polydisperse spheres with diameter D = 5000 Å.  
Three different polydispersities are included (P = 0 (monodisperse), 1.3 % and 5 %). 
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Figure 3.  Figure of the schematic layout of the USANS instrument.  The dashed line 
indicates the beam path.  The measured scattering angle, or momentum transfer q, is 
determined by rotation of analyzer crystal. 
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Figure 4.  View of scattering with axis qx and qy collected by analyzer on USANS 
instrument.  Circles represent iso-intensity contours from isotropic small angle scattering.  
The narrow slit represents the scattering region collected by analyzer. 
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Figure 5.  Slit smeared scattering cross-section for spherical particles, Ravg =2495 Å, for 
polydispersity p =0, 0.013 or 0.05.  The slit length for smearing was ΔqV = 0.037 Å-1. 
 

Figure 6. Invariant type plot of slit smeared data: qIS(q) vs q.  The area under curve is 
proportional to the Porod invariant QI which can be used to calculate volume fraction. 

10

100

1000

104

0 0.001 0.002 0.003 0.004 0.005

p=0.0
p=0.013
p=0.05

I S
(q

)  
  (

cm
-1

sr
-1

)

q  (Å-1)

sphere_poly.gra2

0

2

4

6

8

10

12

0 0.001 0.002 0.003 0.004 0.005

p=0.0
p=0.013
p=0.05

qI
S
(q

)  
  (

Å-1
cm

-1
)

q  (Å-1)

sphere_inv.gras



 17

Figure 7.  Porod type plot of slit smeared data: q3IS(q) vs q.  The dashed curve is the 
average value of asymptotic data: CP,S. 

 
Figure 8.  Plot showing Guinier fit to model data [ ln(I) vs. q2]. Fit made in small q limit: 
0 < q < 1.2/RG.  Dashed curves show effect of slit smearing.  
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